

Measured Radiated Sound from Large Commercial Vessels

Controlling sources of radiated noise from large modern cruise ships and dependence on propulsion type and vessel speed.

For NOAA Vessel Quieting Symposium – 1 May 2007 Presented by Blair Kipple of NSWC Carderock Division

Cruise Ship Radiated Sound

- Eight Vessels
- Measured at Navy's SEAFAC Facility
- **1999-2004**
- Cooperative Project Between NSWC, NPS, and Cruise Lines

Vessel Types

- Length: 620 to 960 ft
- Displacement: 23 to 92 thousand ton gross
- Vintage: 1958, and 1995 through 2002
- Propulsion:
 - Steam turbine
 - Diesel
 - Diesel-electric
 - Diesel-gas turbine-electric

Why cruise ships in this forum?

- 1.Propulsion systems used by large vessels are represented
- 2. Propulsion systems account for most of the noise issues of concern with large vessels in general
- 3. Solid data set exists

What we will cover

- Show typical radiated sound spectra
- Identify important sound sources
- Compare sound between ships
- Discuss speed dependence
- Compare large vessels to other types

Importance of Controlling Sound Sources

Symposium focus is on "potential application of vessel quieting technology"

Relevant questions:

- 1. What acoustic energy is most important (consider both level and frequency)?
- 2. What are the sources of these energies?

Typical Cruise Ship Noise Spectra

Frequency Spectrum

Frequency Spectrum

Frequency Spectrum

Diesel electric – 10 kt

Diesel electric - 10 and 15 kt

Diesel electric – 10 kt

Diesel electric - 10 and 15 kt

Diesel electric – 10 kt

Diesel electric - 10 and 20 kt

Diesel/gas turbine/electric – 10 kt

Diesel/gas turbine/electric - 10 and 20 kt

Diesel – 10 kt

Diesel – 10 and 20 kt

Steam – 10 kt

Steam - 10 and 20 kt

Controlling Sources

- Diesel electric: electric propulsion motors, generator engines, propeller
- Diesel: propulsion engines, generator engines, reduction gear, propeller
- Steam: turbines, reduction gear, propeller

Controlling Sources

- Auxiliary systems apparently not as important
- Ship specific sources can be significant

Sound Sources and Quieting Efforts

- Important to identify and focus efforts on primary sources
- From a silencing standpoint, there is often little to be gained by silencing second order sources

Comparability

Compare sound levels and character between vessels

Comparability

Comparability – Cruise Ships Envelope

Cruise Ships Vs Other Vessels

Radiated Sound Level by Vessel Size

Speed Dependence

Speed Dependence

Speed Dependence – Eight Vessels

Speed Dependence

- Sound from some electric propulsion ships can be fairly speed independent
- However in some cases electric propulsion noise components can be highly speed dependent
- Propeller related noise can be highly speed dependent (role of propeller pitch setting?)

Re-cap

- Cruise ship sound (level, character, and controlling sources) is vessel dependent
- Propulsion system related, power generation, and propeller are typically most important sources
- Noise from several vessels showed significant speed dependence, but others exhibited less speed dependence

